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For complex centrosymmetric structures the symbolic addition method has two weak links; the first 
is in the initial few steps when single sign relationships must be trusted and the second is in the accep- 
tance of relationships between sign symbols. A systematic multi-solution symbolic addition procedure 
is described which greatly reduces the risk of taking a wrong step and offers the possibility of solving 
structures with up to 400 atoms in the unit cell. A computer program is described which incorporates 
some of the proposals. Several alternative procedures are also described for extending the application 
of phase-determining techniques to non-centrosymmetric structures and the result of applying one of 
these methods is given. The basis of these procedures is that initial phase allocations in the correct 
quadrant (n/4, 3n/4, 5n/4, 7n/4) to a few reflexions is sufficient to derive new phases and to refine them 
by the usual tangent formula. 

Introduction 

For centrosymmetric structures the point has now been 
reached where, for equal-atom structures with no spe- 
cial features, direct methods are at least as effective 
as other methods of solving crystal structures. After 
many years in which various types of sign-determining 
formula have been proposed it has become clear that 
the simplest one of all, the triple-product sign relation- 
ship (t.p.s.r.) is the most powerful and the most useful. 
The method of using these relationships which has 
proved to be very powerful is based on that proposed 
by Zachariasen (1952) in his contribution to the trio 
of pioneer papers by himself, Sayre (1952) and Cochran 
(1952). Zachariasen showed that if inequality relation- 
ships enabled the signs of some structure factors to be 
related and if signs, where unknown, were represented 
by letter symbols then subsequent use of the relation- 
ship 

s(h) ~s{ S s(h ' )s (h-  h')} (I) 
h' 

could lead to a knowledge of signs (perhaps in terms 
of symbols) for more reflexions and could also often 

enable the signs corresponding to the symbols to be 
determined. It is assumed in (1) that all the signs are 
those of large unitary structure factors. 

It was suggested by Woolfson (1961) that a 'hit-or- 
miss' version of Zachariasen's method could be tried 
even when inequality relationships were not available. 
If a number of the strongest t.p.s.r.'s were accepted 
as inviolable then further progress could be made by 
the use of relationship (1). 

However, the main credit for demonstrating the full 
power of this type of method must go to Karle & 
Karle, who have developed a systematic approach to 
the use of sign symbols which they call the 'symbolic 
addition' method. These workers and their associates 
have solved a number of fairly complex structures (e.g. 
Karle & Karle, 1964a; Karle, Karle, Owen & Hoard, 
1965) and their process is now widely used by crystal- 
lographers everywhere. 

The process of using symbols has also been extended 
to the solution of non-centrosymmetric structures. The 
applications which have been made (Karle & Karle, 
1964b; Karle & Karle, 1966a) have relied to some 
extent on the presence of centrosymmetric projections 
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so that when some initial origin-fixing phases were 
chosen as 0, n or n/2 the phases of other projection 
reflexions would be known to be restricted to similar 
special values. Some general phases (usually three) 
were represented by letter symbols and the determina- 
tion of new phases was carried forward by means of 
the relationship 

= + )h ' ,  (2)  

where the average is taken over these values of h' for 
which the phases on the right-hand side are known 
and for which the associated U's are large. This rela- 
tionship must be used with great caution; if, for exam- 
ple, two pairs of phases are available on the right hand 
side, ( - 2 0 ° , 3 0  ° ) and ( - 1 7 0  ° , -160°) ,  then the two 
sums of phases are 10 ° and - 3 3 0  ° and the average 
- 1 6 0  °. These values are in fact only 20 ° apart, for 
- 3 3 0  ° is equivalent to 30 °, and the reasonable average 
to take is 20 ° . This demonstrates that when this type 
of averaging process is carried out in terms of symbols 
great care must be taken - especially in deducing rela- 
tionships between the phase symbols. 

Finally Karle & Karle perform a cyclic refinement 
of phases by means of a special application of Sayre's 
equation applied to the normalized structure factors, 
the E 's  (E= UI/N if there are N equal atoms in the 
unit cell). This is 

~ah=phase of 27 Eh, Eh_ h, , (3) 
h' 

where the summation includes all the E 's  whose phases 
have been determined. This relationship can be ex- 
pressed in the more convenient form 

27 IF_.h, Eh_h, l sin(~ u, q- ~h--h') 
h' 

tan ~h= 27 [Eh, Eh_h, [ COS(~ h, + ~gh_h, ) (4) 
h' 

Equation (4) emphasizes another hazard in applying 
equation (2) - that it makes no provision for com- 
pounding the probabilities of separate indications of 
phase. Equation (2) tends to suggest that a phase indi- 
cation of 0 ° together with one of 180 ° would indicate 
a probable phase of 90 ° (or 270 °). In fact, if two phase 
indications have equal weight and differ by 180 °, then 
equation (4) gives tan ~h = 0/0, showing .that all phase 
angles are equally probable. A full treatment of the 
probabilities indicated by equation (4) has been given 
by Cochran (1955). 

• It is the purpose of the present paper to demonstrate 
how these methods can be extended to structures of 
greater complexity than hitherto and, in the case of 
non-centrosymmetric structures, how the whole pro- 
tess of phase determination can be made more system- 
atic. 

C e n t r o s y m m e t r i c  s t r u c t u r e s  

The greatest weakness of the symbolic addition method 
is in the early stages of its application when, in order 
to progress, one must rely on single sign relationships 
to determine new signs (usually in terms of symbols). 

For simple and moderately complex structures the first 
few steps might be reasonably sure but it is clear that 
for more complex structures the whole process might 
well come to grief at this stage. However once this 
barrier is penetrated, and new signs are being found 
on the basis of two or more t.p.s.r.'s, one may progress 
far more confidently. If for example the same sign 
(or sign symbol) allocation is suggested by two t.p.s.r.'s 
with probabilities p~ and p2 then the overall probability 
that this sign is correct is 

pip2 (5) 
P+=  1 - p l - p a  + 2plpa " 

Thus  for Pl =p2=0"80 

P+ = 0.941 

and for pl =p2 = 0.85 

P+ = 0.970 

so that even a pair of quite weak sign relationships in 
unison can give a strong indication of sign. 

Tollin (1962), in considering the Cochran & Douglas 
(1955) matrix-inversion method of using t.p.s.r.'s, has 
considered the probability of obtaining the correct 
solution when one allows for different numbers of 
failures in the basic set of sign relationships. This type 
of consideration is also relevant to the symbolic-addi- 
tion method. Let us have a look at the early stages 
of the process and try to assess the risks involved. The 
probability for a single t.p.s.r., assuming N equal atoms 
per unit cell, is given by 

tanh (IEhEh'Eh-h'l 
Ph h, =½-[-½ (6) 

• _ N + / 

(Cochran & Woolfson, 1955). The dislribution of E 's  
does not depend on the structural complexity and in 
the early stages one is usually dealing with three E's, 
the magnitude of whose product is aboul 20. Thus the 
sort of probability one is concerned with is of the order 

( 2 0 )  
Pmax = ½ + ½ tanh 

In Table 1 Pmax is shown as a function of N. 

Table 1. Relation of  Pmax to N 
N emax 
25 0.9997 
50 0.996 

100 0.982 
200 0.945 
400 0.881 

The number of steps one must take relying on single 
t.p.s.r.'s depends on the structural complexity and also 
on the symmetry number of the space group. The more 
complex the structure, the larger is the number of points 
in the reciprocal lattice and, for a given number of 
known signs, the less is one likely to find double indi- 
cations for a new sign. However the symmetry number 
is important here; for the simplest case, P 1, only two 
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points in the reciprocal lattice are determined for each 
new sign whereas for an orthorhombic space group 
eight points are determined. Let us consider a situation 
where the first ten steps are to be taken with single 
t.p.s.r.'s with probabilities given by Table 1. The prob- 
ability that one can get through this series of steps 
without error is (Pmax) 1° and is shown in the first 
column of Table 2. 

Table 2. Probability o f  errors in first ten steps 
Probability Probability of Probability of 
of no error one or less error two or less errors 

N in 10 steps in 10 steps in 10 steps 
25 0.998 1.000 1.000 
50 0.962 1.000 1.000 

100 0.834 0.987 1.000 
200 0.568 0.899 0.986 
400 0.282 0.663 0.894 

One can see that this probability sharply diminishes 
with increasing N and for N >  100 there is a large 
probability of failure. This suggests a method of pro- 
gress which gives more protection against failure - that 
is we allow the possibility of up to one or even two 
failures in the first ten steps. The degree of extra pro- 
tection this offers is shown in the second and third 
columns of Table 2. 

The process for allowing one error is now described. 
In the first step one assumes that the relationship suc- 
ceeds (s) or fails (f) .  From f one takes the next nine 
steps as all successful. From s we allow the next rela- 
tionship to succeed or fail and so on. One ends up 
having taken eleven different routes, one of which cor- 
responds to no failures and the other ten to the dif- 
ferent ways of having one failure. 

For the larger values of N it is possible that more 
than ten steps would have to be made with single 
t.p.s.r.'s. In Table 3 are shown the probabilities that 
there will be two or less failures for various numbers 
of steps for N =  400. 

Karle & Karle (1966b) have pointed out that often, 
as the development of signs proceeds, relationships 
between sign symbols become apparent. They also urge 
a great deal of caution in accepting such relationships 
and it is our experience that this can be a source of 
error even when the sign symbols are apparently strong- 
ly linked. 

The way we have developed of avoiding pitfalls when 
deriving relationships between symbols is best explain- 
ed as part of the description of a program which we 
have written to carry through the symbolic addition 
procedure. This program, written in F O R T R A N  IV 
for an IBM 360/40 computer with a 16K store, is 
written in five parts which can be run together or suc- 
cessively after examination of each partial output. 

Part I reads in the input data in the form 
(a) a title card 
(b) space group type 
(c) list of U's or E 's  with their indices (up to 250) 
(d) list of triple products (up to 1000). 

The item (d) is output by a previous program which 
takes in the largest 250 U's or E 's  and punches out 
the triple products which relate them. 

This part of the program fixes the origin by assigning 
positive signs to some reflexions and allocates symbols 
to six other reflexions. The arbitrary signs and symbols 
are allocated to the reflexions which occur most fre- 
quently in the t.p.s.r.'s (within the limitation imposed 
by the rules for selecting origin-fixing reflexions). 

Part II goes through the process of building up the 
number of reflexions to which signs or symbols are 
allocated by the use of relationship (1). We shall not 
explain the details of this process except to say that 
the right-hand side of (1) is calculated for all the re- 
flexions of unknown sign each time a sign or symbol 
is allocated and this is only allocated to the reflexion 
for which the new sign (or symbol) indication has the 
highest probability. 

Table 3. Probability o f  two or less failures 

Number Number Probability of 
of steps of routes failures < 2 

10 56 0.894 
12 79 0.837 
14 106 0-773 
16 137 0.705 
18 172 0.637 
20 211 0.569 

The total number of routes which must be explored 
does not increase alarmingly with the number of steps 
which must be taken and, even for twenty steps, the 
probability that one of the routes is correct is higher 
than one half. The number of routes which can be 
tackled will depend on the available computer; for 
example for N = 4 0 0  and twenty steps one can cover 
all cases with less than or equal to three failures with 
1351 routes giving a 0-723 chance of netting the correct 
set of steps. 

Part III searches for relationships between the sym- 
bols. If for a t.p.s.r, each of the three members has 
associated a sign, a symbol or a product of symbols 
then either the product is identically unity or a rela- 
tionship between the symbols results. For six symbols 

- a, b, c, d, e , f -  there can be up to 63 such relationships. 
That this is so can be seen by considering the symbols 
as binary bits; there are 63 arrangements of six l 's  or 
O's excluding all zeros. The relationships are listed in 
order of probability - this latter quantity being meas- 
ured by the frequency of occurrence. 

Part IV solves the relationships between the sign 
symbols by a similar process to that used by Cochran 
& Douglas (1955). In the simplest case if a set of six 
strong non-linearly dependent relationships can be 
found and are assumed all to hold then a unique set 
of signs can be allocated to the symbols. In practice 
we also consider the possibility that one of the rela- 
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tionships may fail and this gives six more sets of signs 
for the symbols - making seven sets in all. 

In the event that not all the symbols can be solved 
for, the total number of sets of signs for the symbols, 
allowing one of the relationships to fail, is 26-m(m + 1), 
where m is the number of symbols for which a solution 
is found. 

Part V generates the signs of each reflexion for each 
of the sets of signs for the symbols. At this stage if a 
reflexion has associated with it more than one set of 
symbols indicating its sign, and if these indications 
oppose one another then, if the overall indication of 
sign is unsatisfactory, the sign of this reflexion will be 
given as indeterminate. 

Three figures-of-merit are generated for each output 
set of signs. One counts the number of sign relation- 
ships which hold, the second the sum of the probabili- 
ties of the sign relationships which hold and the third 

~r sxs2s3lExEzE3l • 

This program has been tried with a number of struC- 
tures and has always been successful. The largest struc- 
ture tried has been myo-inositol (Rabinowitz & Kraut, 
1964) which contained 96 atoms in the unit cell with 
space group P21/c. The solution with the highest figures 
of merit was that for which all the relationships be- 
tween the sign symbols held, and of the 250 E's  being 
handled the signs of 240 were correctly determined, 
eight were undetermined because they did not occur 
in t.p.s.r.'s, and two signs were incorrect. 

Other known structures which have been solved are cy- 
clodecane-1,6-dione (P21/c, Z = 2, N =  24), tetraphenyl- 
naphthalene (P21/c, Z = 2, N =  68) and guanidinium ace- 
tate (Pnma, Z =  4, N =  32). These had previously been 
solved by various workers at Louvain by inequalities, 
by hand application of the symbolic addition method 
and by the Patterson function respectively and will all 
be published in due course. 

However, one structure, the previously unknown 
structure of one of the tetramers of t-butylfluoroacety- 
lene ( P 2 1 / c , Z = 2 , N = 5 6 )  was solved after a hand ap- 
plication of the symbolic addition procedure had 
failed, as had other attempts at solution. It turned out 
in this case that the correct solution involved the failure 
of a reasonably well-indicated relationship between 
symbols. The first seven equations between the sym- 
bols output by the computer were: 

(1) d f = -  1 Found 33 times 
(2) acef= + 1 26 
(3) e f=  - 1 9 
(4) ad= +1 6 
(5) d e = - b l  6 
(6) aef  = - 1 6 
(7) a b =  - I 5 

The relationships above, less (5), could be solved for 
all the sign symbols but, in fact, (4) did not hold. The 
interesting point is that, although at first inspection the 

failure of (4) would seem to lead to more failures of 
sign relationships, in fact the corresponding set of signs 
had the highest figures of merit. This structure is being 
refined by G. S. D. King, Union Carbide European Re- 
search Associates, Brussels and will be published in 
due course. 

Non-centrosymmetric structures 

The difficulties and dangers of using relationship (2) 
have already been mentioned and it would certainly 
be an advantage to avoid its use altogether if this were 
possible. We have tried a procedure where relationship 
(4) is the only one used and it was certainly most suc- 
cessful on a simple trial structure. In developing this 
approach we were guided by the well-known fact that 
for centrosymmetric structures a recognizable correct 
structure is revealed by a Fourier synthesis with correct 
signs and randomly wrong structure amplitudes. Carry- 
ing over this experience to non-centrosymmetric struc- 
tures it suggests that it may be enough to allocate the 
signs of the real and imaginary parts of some structure 
factors in order to progress with a phase-determining 
procedure. 

The example we tried was cis-di(nitrosomethane) 
(Germain, Piret & Van Meerssche, 1963), space group 
P212121 with Z = 4  and N=24.  The rules for selecting 
initial phases for non-centrosymmetric space groups is 
that three phases, the parity of whose phases are non- 
linearly dependent, may be chosen arbitrarily and one 
other may be designated as in the range 0 to + n 
(or 0 to - n )  which fixes the enantiomorph one is 
dealing with. We followed the convenient course of 
choosing three prime-projection reflexions arbitrarily; 
this gives the advantage that other prime-projection 
reflexions are also known with a single ambiguity 
either as 0 or n or as + n/2 or -n /2 .  For four other 
reflexions, which had been found to link most fre- 
quently with others by triple product phase relation- 
ships, various combinations of initial phases were as- 
signed as follows 

n 3n (enantiomorph fixing) 
4 '  4 

n 3n - n  - 3 n  
4 '  4 '  4 '  4 

n 3n - n  - 3 n  
4 ' 4 ' 4 '  4 

n 3n --n - 3 n  
4 ' 4 ' 4 '  4 " 

For each of the 128 initial sets of phases new phases 
were derived by an iterative process. For this structure 
the criterion of acceptance was as follows: 
1st iteration 25 best-determined phases accepted - 

all others are rejected. 
2nd iteration 50 best-determined phases accepted - 

all others rejected. 
3rd iteration 75 accepted etc. 



G .  G E R M A I N  A N D  M .  M .  W O O L F S O N  95 

4 th  i t e r a t i o n  100 a c c e p t e d  etc. 
5th  i t e r a t i o n  all  p h a s e s  a c c e p t e d .  

By  ' b e s t - d e t e r m i n e d  p h a s e s '  w e  m e a n  t h o s e  w i t h  t he  
h i g h e s t  va lues  o f  

Z h = [  X IEh, Eh-h, I  sin(cPh, + ~Pa-h,)] 2 
h' 

+[  X IEh, Eh_n, lCOS(~a h, +~ah_h,)] 2 , (7) 
h' 

which is the square of the modulus of the right hand 
side of equation (3). 

The number of iterations (five) and the numbers of 
accepted phases (25, 50, 75 etc.) are input parameters 
of the program and can be varied to match the com- 
plexity of the structure. 

At the end of the last iteration a figure-of-merit 
criterion is calculated which is 

c =  x zh .  (8) 
h 

I t  was  f o u n d  t h a t  t h e  set  o f  p h a s e s  w i t h  t h e  h i g h e s t  
f igure  o f  m e r i t  t u r n e d  o u t  to  be  ve ry  c lose  to  t he  co r -  
rec t  r e f ined  p h a s e s  as is s h o w n  in  T a b l e  4. 

Th i s  s t r u c t u r e  was  a ve ry  s i m p l e  o n e  b u t  a n  e x t e n s i o n  
o f  t he  s a m e  p r inc ip l e  to  m o r e  c o m p l e x  s t r u c t u r e s  s e e m s  
s t r a i g h t f o r w a r d .  H o w e v e r  i f  o n e  has  n g e n e r a l  s t a r t i n g  
re f lex ions  in a d d i t i o n  to  t he  t h r e e  o r ig in - f ix ing  a n d  t h e  
o n e  e n a n t i o m o r p h  f ixing re f l ex ion  t h e  n u m b e r  o f  ini-  
t ia l  sets o f  p h a s e s  inc reases  by  a f a c t o r  o f  f o u r  fo r  
e a c h  u n i t  i n c r e a s e  o f  n. Th i s  is s h o w n  in T a b l e  5. 

T a b l e  5. lncrease of number of initial sets o.f phases with 
increase in number (n) of starting reflexions 

Total starting reflexions Number  of initial sets 
4 + n  2 x 4 n  

7 128 
8 512 
9 2048 

10 8192 

A poss ib le  w a y  o f  i n c r e a s i n g  the  n u m b e r  o f  s t a r t i n g  
re f lex ions  w h i l e  k e e p i n g  t h e  n u m b e r  o f  in i t ia l  sets smal l  
is to  m a k e  use  o f  t h e  s u b s t a n t i a l i z a t i o n  o f  s ign se- 
q u e n c e s  i d e a  p r o p o s e d  by  W o o l f s o n  (1954). I n  t h e  
s imp les t  f o r m  o f  th is  t he  f o l l o w i n g  s ix teen  s e q u e n c e s  
o f  seven  s igns w e r e  u s e d :  

T a b l e  4. Compar&onofphase 
phase 

Published Program 
h k l  ~ 
0 3 5 270 ° 270 ° 
2 0 5 90 90 
1 4 0 270 270 
1 1 5 32 15 
5 5 1 319 330 
6 1 1 57 60 
5 2 4 102 105 
7 2 1 185 180 
2 3 4 43 30 
2 10 2 346 350 
4 10 2 168 185 
0 12 0 360 360 
2 4 2 283 275 
4 6 2 332 335 
2 6 4 172 165 
4 10 4 225 240 
2 4 4 84 60 
2 2 0 360 360 
4 10 0 180 180 
6 4 0 360 360 
4 9 1 251 250 
6 3 1 115 105 
6 7 3 308 300 
4 7 1 198 205 
0 5 5 270 270 
0 13 3 270 270 
4 3 1 12 35 
4 5 1 154 150 
6 9 1 207 225 
2 15 1 34 35 
0 15 1 270 270 
4 13 1 40 45 
4 11 1 147 150 
4 7 3 287 295 
2 9 5 123 100 
4 9 3 329 305 

angles obtained by the program described with published 
angles for cis-di(nitrosomethane) 

Published Program Published Program 
h k l ~ ~ h k l 
2 11 3 246 ° 245 ° 4 9 4 207 ° 
2 9 1 111 120 4 9 0 180 
0 7 5 90 90 2 5 0 360 
2 7 1 167 175 2 9 2 160 
3 12 1 355 5 2 9 4 150 
2 14 2 173 175 7 4 0 90 
3 8 3 176 185 2 6 0 180 
3 4 3 357 355 0 8 0 180 
5 0 1 270 270 1 12 2 276 
1 14 1 348 340 1 10 4 66 
5 8 1 66 65 3 6 4 343 
3 8 5 171 155 5 8 0 270 
3 8 1 180 180 1 2 4 282 
5 2 1 34 30 1 8 0 90 
3 11 2 93 90 3 0 2 360 
3 7 4 292 285 3 10 2 222 
3 5 4 261 275 5 6 2 238 
3 11 0 90 90 5 0 4 180 
1 3 0 270 270 1 0 4 180 
1 13 2 69 70 5 2 0 90 
3 9 2 69 100 1 12 0 90 
7 1 2 262 255 1 14 2 235 
3 7 0 270 270 5 4 0 90 
3 3 4 90 85 3 10 0 90 
0 4 5 180 180 0 8 2 360 
0 12 3 180 180 0 6 4 180 
4 6 4 32 25 5 3 3 34 
6 0 3 270 270 3 5 3 73 
2 12 3 64 80 1 11 3 320 
2 6 1 244 260 3 11 1 97 
2 7 0 180 180 1 7 5 148 
4 2 4 115 135 3 1 1 274 
2 13 2 335 350 1 5 5 235 
4 7 2 151 160 5 3 1 257 
4 1 4 27 20 3 7 1 281 
4 3 4 330 345 

200 o 
180 
36O 
175 
175 
90 

180 
180 
275 

55 
350 
270 
270 

90 
36O 
215 
265 
180 
180 
90 
90 

26O 
90 
9O 

360 
180 

30 
65 

340 
110 
165 
250 
210 
260 
285 

A C 24B - 7 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
(i) + + + + + + + + 
(ii) + + + + + + + + 
( i i i )  + +  + + + + + + 
(iv) - + - + - + - +  - + - + - + - + 
(v) + + +  + - + +  + + -  
(vi) + + + + + + + + 
( v i i )  - + - + + - -  + - + - + + - + 

No matter what sequence of seven signs is chosen, 
one of the above sixteen will have at least six of the 
seven correct. The penalty one suffers for having six- 
teen instead of 128 sequences, which is necessary to 
ensure one sequence completely correct, is the prob- 
ability of one sign being wrong. 

We can use a pair of signs to represent the quadrant 
of a phase ~, the signs being those of sin ~0 and cos 
respectively. Thus the row (i) could represent the sign 
of cos ~0 for the enantiomorph fixing reflexion (we can 
fix sin ~0 as positive and so restrict the phase to 0--zc) 

• and the other six rows, taken in pairs, can represent 
the phases of three other reflexions. If one of the signs 
is wrong then it means that either cos ¢0 or sin ~0 has 
the wrong sign while the other member of the pair is 
correct and this will put ~0 in a neighbouring quadrant 
to the correct one. 

There are various ways one could use this principle 
and indeed one could use larger substantialization se- 
quences (Good, 1954). For example it is possible to 
guarantee 14 out of 15 correct signs in 2048 sequences 
and this would deal with the case n =7. For higher- 
symmetry non-centrosymmetric space groups the 
choice of origin terms often ensures that certain pro- 
jection reflexions have phases 0, lr or + ~r/2 and in such 
cases a single row of the substantialized sequences is 
sufficient to deal with this reflexion. 

We believe that by means of this technique of de- 
veloping phases from a number of initial sets so that 
relationship (4) can be used immediately, coupled with 
the use of substantialized sequences and searching 

• figure-of-merit tests it should be possible to solve non- 
centrosymmetric structures with N=200 for Z = 4 ,  
N =  150 for Z = 2  and N =  100 for Z =  1. These estimates 
may well be raised by a factor of two when computers 
capable of 107 operations per second become available. 

C o n c l u s i o n s  

While it cannot be said that the phase problem has 
been solved, what can certainly be said is that, for 
moderately complex structures, direct methods offer a 
high probability of reaching the correct solution. This 
probability decreases as the complexity of the struc- 
ture increases. One can increase the probabilities by 

allowing for more possible breakdowns of relation- 
ships early in the processes, but inevitably this leads 
to a great increase in the total effort and the limiting 
factor will often be the speed and size of the available 
computers. What is certain is that progress can be made 
in applying phase-determining techniques to the solu- 
tion of crystal structures of greater complexity than 
hitherto only if one uses systematic, searching, multi- 
solution methods for, with a complex structure, it is 
unlikely that the correct solution can be reached by a 
straightforward path. 

All the suggestions put forward in this paper can 
be applied with existing computers and it is intended 
that, when programs implementing these ideas have 
been written and tested, they will be made available 
for general use. The limited multi-solution program 
described in this paper is available now together with 
complete operating instructions. 
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